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We analytically calculate the spatial nonlocal pair correlation function for an interacting uniform
1D Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations.
Our results span six different physical realms, including the weakly and strongly interacting regimes. We
show explicitly that the characteristic correlation lengths are given by one of four length scales: the
thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase
coherence length. In all regimes, we identify the profound role of interactions and find that under certain
conditions the pair correlation may develop a global maximum at a finite interparticle separation due to
the competition between repulsive interactions and thermal effects.
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The study of two-body and higher-order correlations is
becoming an important theme in the physics of ultracold
quantum gases. Correlation functions are observables that
provide information about quantum many-body wave
functions beyond the simple measurement of density pro-
files. They are of particular importance for the understand-
ing of low dimensional and strongly correlated systems,
atomic gases with exotic phases, and systems with multiple
order parameters. Such correlations can manifest them-
selves in momentum space, as with pair correlations of a
Fermi gas [1], and can be observed in time-of-flight experi-
ments [2,3] which has been the standard method of mea-
surement of degenerate gases. Nonlocal correlations in
position, on the other hand, should ideally be performed
in situ with a spatial resolution that is smaller than the
typical correlation length, requiring spatially resolved in-
situ single-atom counting [4–6].

In this Letter we address the problem of nonlocal two-
particle correlations in a 1D Bose gas and propose an
experimental method to measure them in situ using
spatially resolved Raman transitions [7] and single-
atom counting in an optical box trap [8]. We calculate
the spatial second-order correlation function g�2��r� �
h�̂y�0��̂y�r��̂�r��̂�0�i=n2 for a uniform gas with repul-
sive �-function interactions [9,10] (where �̂ is the field
operator, r is the interparticle separation, and n is the 1D
linear density) and assess the feasibility of the method with
respect to the characteristic correlation lengths.

Given a particle at a certain location, the pair correlation
g�2��r� describes the probability of finding a second
particle at a distance r compared to uncorrelated particles,
and gives the characteristic length scale over which the
density-density fluctuations decay. The knowledge of
g�2��r� in 1D Bose gases is of fundamental importance
for the understanding of second-order coherence and for
practical applications such as intensity interferometry in

1D environments. The recent experimental realizations of
ultracold atomic gases in the 1D regime [11–15] and the
fact that the 1D Bose gas problem is exactly integrable
using the Bethe ansatz [9,10] make this an ideal system for
investigating quantum many-body physics in previously
unattainable regimes.

An early experimental measurement of atom-atom cor-
relations using microchannel plate detectors was per-
formed in an ultracold (but not degenerate) cloud of
metastable neon [16]. More recently, the method was
applied to quantum degenerate samples of helium atoms
and to correlations resulting from condensate collisions
[17]. Other experimental techniques to access higher-order
correlations include shot-noise spectroscopy of absorption
images [2,3,18], the measurement of three-body recombi-
nation and photoassociation rates [12,13,19], fluorescence
imaging [4], and atom counting using high-finesse optical
cavities [20].

Certain aspects of pair correlations in a repulsive
1D Bose gas have been studied previously, including the
local correlation g�2��0�, asymptotic properties at large r,
and the zero temperature behavior [21–29]. Here we ex-
tend these results to nonlocal correlations in six analyti-
cally tractable regimes of Refs. [25,26], ranging from
strong to weak interactions—all at finite temperatures.

We begin by recalling that the second quantized
Hamiltonian of the system is given by

 Ĥ �
@

2

2m

Z
dx@x�̂

y@x�̂�
g
2

Z
dx�̂y�̂y�̂ �̂; (1)

wherem is the mass and g > 0 is the coupling constant that
can be expressed via the 3D s-wave scattering length a as
g ’ 2@2a=�ml2?� � 2@!?a [30]. Here, we have assumed
that the atoms are transversely confined by a tight
harmonic trap with frequency !? and that a is much
smaller than the transverse harmonic oscillator length
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. The 1D regime is realized when the exci-

tation energy @!? is much larger than the thermal energy
T (with kB � 1) and the chemical potential � [26,31]. A
uniform system in the thermodynamic limit is completely
characterized [9,10] by two parameters: the dimensionless
interaction strength � � mg=�@2n� and the reduced tem-
perature � � T=Td [25], where Td � @

2n2=�2m� is the
temperature of quantum degeneracy.

Although the uniform 1D Bose gas problem is exactly
solvable by the Bethe ansatz [9], the cumbersome nature of
the eigenstates restricts the straightforward calculation of
correlation functions [22,32]. The Hellmann-Feynman
theorem and the solutions to Lieb-Liniger [9] or Yang-
Yang [10] integral equations—used for calculating the
local correlation g�2��0� [24–26]—can no longer be ap-
plied to g�2��r� at arbitrary separation r. For sufficiently
large r, the Luttinger liquid theory predicts universal fea-
tures of g�2��r� [33]. At T � 0 its behavior is characterized
by interaction-dependent power-law approach to the un-
correlated value g�2��r� � 1 at r! 1. At finite T the
approach to g�2��r� � 1 becomes exponential. The
Luttinger picture is limited to temperatures smaller than
the high energy cutoff of the order of Td. To describe
nonuniversal features of g�2��r� at high temperatures and
short distances it is necessary to adopt alternative theoreti-
cal techniques [24,25,34].

Strongly interacting regime [�� max�1;
���
�
p
�].—We

employ perturbation theory with respect to the small pa-
rameter ��1 [35] around the Tonks-Girardeau (TG) limit of
impenetrable (hard-core) bosons [21]. At T � 0 we obtain
[34] the known [22,29] result
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where z � �nr. The last term here diverges logarithmi-
cally with z and can be regarded as a first-order perturba-
tion correction to the fermionic inverse square power law.
Accordingly, Eq. (2) is valid for z� exp���.

Well below quantum degeneracy, �� 1, finite tempera-
ture corrections are obtained using a Sommerfeld expan-
sion around Fermi-Dirac distribution for quasimomenta at
T � 0. For rn� ��1 this gives [34] an additional contri-
bution �2sin2��nr�=12�2 to the rhs of Eq. (2), which is
negligible compared to the T � 0 result as �� 1. At
r � 0, Eq. (2) gives perfect antibunching g�2��0� � 0,
which corresponds to a fully ‘‘fermionized’’ 1D Bose
gas, where the strong interatomic repulsion mimics the
Pauli exclusion principle for intrinsic fermions. By extend-
ing the perturbation theory to include terms of order ��2

we reproduce the known T � 0 result for the local corre-
lation, g�2��0� � 4�2=3�2 [24,25].

In Fig. 1(a) we plot the function g�2��r�, Eq. (2), for
various �. The pair correlation exhibits oscillatory struc-
ture (similar to Friedel oscillations of a 1D electron gas
with an impurity [36]), with the local maxima implying the
existence of more likely separations between particles.
Despite uniform density, this can be interpreted as a qua-
sicrystalline order (with a period�1=n) in the two-particle
sector of the many-body wave function.

Well above quantum degeneracy, �� 1, we use pertur-
bation theory combined with the Maxwell-Boltzmann dis-
tribution of quasimomenta. In this high-temperature
‘‘fermionization’’ regime [25] the characteristic momen-
tum of the particles is 1=�T and the perturbation parameter
is a1D=�T � 1, where a1D � @

2=mg ’ l2?=a �1=�n is

the 1D scattering length and �T �
���������������������
2�@2=mT

p
is the

thermal de Broglie wavelength. This implies �� �2,
and to first order in ��1 we find [34]

 g�2��r� � 1� �1� 2�nr=��e��n
2r2=2: (3)

In the limit r! 0 this leads to perfect antibunching,
g�2��0� � 0, while the corrections [as in Ref. [25],
g�2��0� � 2�=�2] are reproduced at second order in ��1.
The correlation length associated with the Gaussian decay

is given by �T �
��������������������
4�=��n2�

p
. For not very large �, the

correlations show a nonmonotonic behavior with a global
maximum at rmax ’ �=2�n. This originates from the com-
petition between the interaction induced repulsion at short
range and thermal bunching [g�2��r�> 1] at r��T . As �
is increased the position of the maximum diverges and its
value approaches 1 in a nonanalytical fashion g�2��rmax� ’
1� �4�=�2� exp���2=8��.

Figure 1(b) shows a plot of Eq. (3) for various � and �.
For a well-pronounced global maximum, moderate values
of �2=� are required (such as �2=� ’ 5, with � � 8, � �
6), and these lie near the boundary of validity of our
approximations (�2=�� 1). The exact numerical calcu-
lations of Ref. [27] provide further support for this result
and show a similar maximum for �2=� ’ 0:25 (with � �
4�	 10 and � � 10).
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FIG. 1. Pair correlation g�2��r� as a function of the relative
distance r (in units of 1=n) in the strongly interacting regime,
�� 1: (a) low-temperature TG regime, Eq. (2), for � � 0:01;
(b) regime of high-temperature fermionization, Eq. (3).
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Weakly interacting regime [�2 � �� 1].—For weak
interactions we rely on the fact that the equilibrium state of
the gas is a quasicondensate with suppressed density fluc-
tuations and a fluctuating phase [37,38]. The pair correla-
tion function is close to 1 and the deviations can be
calculated using Bogoliubov theory [24,25].

At sufficiently low temperatures, �� �� 1, when
vacuum fluctuations dominate the excitations and thermal
fluctuations are a small correction we find [34]

 g�2��r� � 1�
����
�
p

L�1�2

����
�
p

nr� � I1�2
����
�
p

nr��

�
1

2�
����
�
p

n2r2 �
��2

8�3=2
cosech2

�
�n�r
2
����
�
p

�
; (4)

where L�1�x� is the modified Struve function and I1�x� is a
Bessel function. The correlation length here is set by the
healing length � � @=

����������
mgn
p

� 1=
����
�
p

n. For r� � and
finite �, the last term in Eq. (4) dominates the others and
gives an exponential decay to the uncorrelated value of
g�2��r� � 1 (for �! 0 one has a power-law decay). Even at
T � 0, oscillating terms are absent, in contrast to the
strongly interacting regime, Eq. (2). The limit r! 0 re-
produces the result of Eq. (9) of Ref. [25], g�2��0� � 1�

2
����
�
p

=�� ��2=�24�3=2�. In Fig. 2(a) we plot Eq. (4) for
different values of �, and we note that the finite tempera-
ture correction term is negligible here.

In the opposite limit, dominated by thermal fluctuations
corresponding to �� ��

����
�
p

, we find [34]

 

g�2��r� � 1�
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�
p e�2

���
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p
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valid for r=� & 1. The last two terms are due to vacuum
fluctuations and are a negligible correction, so the leading
term gives an exponential decay [see Fig. 2(b)] with a
correlation length given by the healing length �. The
peak value is g�2��0� � 1� �=�2

����
�
p
�, in agreement with

Ref. [25]. For r=�� 1 vacuum fluctuations dominate and
we reproduce the asymptotic behavior of Eq. (4).

Nearly ideal-gas regime [�� minf�2;
���
�
p
g].—Finally,

we present the results for the decoherent regime, where
both the density and phase fluctuations are large and the
local pair correlation is close to the result for noninteract-
ing bosons, g�2��0� � 2. Depending on the temperature �,
we further distinguish two subregimes: decoherent quan-
tum (DQ) regime for �� 1, and decoherent classical (DC)
regime for �� 1. Both can be treated using perturbation
theory with respect to the coupling constant g around the
ideal Bose gas result of Ref. [18].

In the DQ regime, with
����
�
p
� �� 1 [25], the nonlocal

pair correlation is [34]

 g�2��r� � 1� 
1� 4��1� �nr�=�2�e��nr; (9)

with the peak value g�2��0� � 2� 4�=�2 [25]. For � � 0
the correlations decay exponentially with the characteristic
correlation length which coincides with the phase coher-
ence length l� ’ @

2n=mT � 2=�n [25] and is responsible
for the long-wavelength phase fluctuations. For � > 0,
g�2��r� becomes nonmonotonic with a minimum at nrmin �

�=4�� 1 before reaching its uncorrelated value g�2��r!
1� � 1. Thus, at intermediate range we have weak anti-
bunching due to interatomic repulsion, while at short range
we have typical ideal-gas bunching due to exchange inter-
action, as shown in Fig. 2(b).

In the DC regime (�� maxf1; �2g), the pair correlation
is given by [34]

 g�2��r� � 1� e��n
2r2=2 � �

������������
2�=�

p
erfc�

�����������������
�n2r2=2

q
�; (7)

where erfc�x� is the complimentary error function. At r �
0 we have g�2��0� � 2� �

������������
2�=�

p
[25] as erfc�0� � 1. In

the noninteracting limit (� � 0) we recover the well-
known result for the classical ideal gas [39] characterized
by Gaussian decay with a correlation length �T . For � > 0
we observe [see Fig. 2(a)] the emergence of nonmonotonic
behavior, with a global maximum g�2��rmax� � g�2��0� �
2�2=� at nonzero separation nrmax � 2�=�� 1. As � is
increased, there is a continuous transition from the DC
regime to the regime of high-temperature fermionization,
with g�2��0� reducing further and the maximum moving to
larger distances.

We now discuss experimental methods to measure pair
correlations. Local correlations have been measured by
photoassociation [13] and by three-body loss [12,19]; how-
ever, nonlocal spatial correlations have not been measured
in situ to the best of our knowledge. We discuss one
possible implementation of spatially resolved imaging in
the context of a 1D gas. The method is closely related to the
spatially resolved measurement of Ref. [7]. The first step
is to ‘‘freeze-in’’ the correlations by turning on a deep
standing wave of far-detuned light, which breaks up the
distribution into discrete packets, separated by a half-
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FIG. 2. Pair correlation g�2��r� in the weakly interacting and
nearly ideal-gas regimes. (a) Solid lines—low-temperature
weakly interacting gas at �� �� 1, Eq. (4); dashed lines—
DC regime, Eq. (7). (b) Solid lines—weakly interacting gas at
�� ��

����
�
p

, Eq. (5); dashed lines—DQ regime, Eq. (9).
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wavelength. The next step is to apply a magnetic field that
varies linearly in magnitude, creating a spatially dependent
Zeeman shift. Next, a stimulated Raman transition is
driven such that atoms in two sites are transferred to a
different hyperfine state. This can be accomplished by
using two frequencies on the Raman beam corresponding
to two different locations. The unaffected atoms can be
removed with a pulse of resonant light and the remaining
atoms counted.

For a specific example, consider a degenerate gas of
sodium atoms in an optical box trap [8], in the F � 2,
mF � �2 state. After freeze-in with a � � 532 nm lattice,
we apply a magnetic field gradient of 150 G=cm. We then
drive a two-photon stimulated Raman transition to the
F � 1, mF � �1 state with Raman beams at 532 nm
with optical power of 2.5 mW focused to 50 �m and a
pulse duration of 260 �s. A detuning of 53 kHz corre-
sponds to a shift of one lattice site and therefore a resolu-
tion of �266 nm. For typical 1D gas parameters, this
resolution is sufficient to resolve the characteristic corre-
lation lengths found here. A related simpler method, but
with somewhat lower resolution, has been recently pro-
posed in Ref. [40].

In summary, we have calculated nonlocal pair correla-
tions in a uniform 1D Bose gas in six physically relevant
regimes. The correlations can be measured using spatially
resolved single-atom counting. We have shown explicitly
that the characteristic global correlation lengths are given
by one of four length scales: the thermal de Broglie wave-
length, the mean interparticle separation, the healing
length, or the phase coherence length. In all cases we
identified the profound role of interactions that can lead
to nontrivial structures with local maxima or minima at a
finite interparticle separation.
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